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Introduction 
 
MRI is intrinsically susceptible to motion artifacts; however, for the same reasons MRI offers 
numerous techniques for measuring motion1.  High performance MRI systems have increased the 
speed of data acquisition and thus reduced the susceptibility to unwanted motion artifacts, while 
increasing the accuracy of motion estimation.  We are now at the limit of gradient switching 
speeds; peripheral nerve stimulation will not allow faster switching times unless some method is 
used to shield the patient from the stimulating field, so new techniques will have to work within 
this limitation. 
 
CINE MRI Acquisition 
 
One of the most effective methods for observing motion is the simplest: obtain a movie of the 
moving object.   Even when the image quality of the individual frames is not great, the 
appreciation of the motion can be quite satisfactory.  For example, CINE acquisitions of the 
heart can show significant wall motion abnormalities that are not appreciated from the individual 
still frames.  Similarly, these movies of the heart can directly demonstrate asynchronous 
activation of the ventrical2. 
 
For a motion that is repeated, such as contraction of the heart or blood flow in major vessels, 
movies in multiple slices can be reconstructed from data obtained from 2-16 consecutive 
heartbeats during a patient breath-hold.  If the patient can hold their diaphragm still for this long, 
and the ECG trigger works well for each beat, and each of the 2-16 beats is very similar, movies 
of extremely good quality are produced3-6.  However, it is not uncommon for at least one of the 
above constraints to be violated in a sick patient.  In this case, reduced data acquisition strategies 
such as TSENSE7 or UNFOLD8;9 can be employed to yield real-time movies10-12.  
 
Spin Tagging 
 
The principle of "tagging" spins with a saturation pulse was first proposed by Morse and Singer 
to measure bulk flow13 .  It was demonstrated by Zerhouni et. al. that the same principle could be 
used to visually mark tissue with tagged magnetization to measure the more complex 
deformations of the heart14.  Axel and Dougherty subsequently proposed a very efficient scheme 
for generating parallel planes of saturation throughout the entire imaging volume15;16.  Many 
investigators have proposed refinements and extensions of these methods for generating more 
complex saturation patterns17-22.  Extensive efforts have been directed towards validating these 
patterns for measuring deformation with phantom experiments of both stationary23;24 and moving 
samples25-27. 
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We can break down the process of motion tracking with spin tagging into three stages: (1) a 
saturation pattern is placed in the myocardial tissue with spatially selective rf pulses, (2) a 
sequence of MR images is obtained in which the displacement of the saturation pattern can be 
observed, (3) the motion of the saturation pattern is used to solve for the motion of the tissue.  
Consideration of the rate and extent of the motion must be taken into account when designing the 
appropriate tagging pattern and imaging protocol27.    Because of the simple nature of the 
saturation pattern, virtually any imaging sequence can have tagging pulses added to it.   
 
Imaging Tagged Mangetization 
 
Although tagging pulses can be added to any imaging sequence, the imaging sequence must 
provide good contrast between the tagged and non-tagged tissue6;28 and provide the temporal and 
spatial resolution required to track the saturation patterns27.   
 
Probably the most common sequence used to image the tagging pattern is the segmented k-space 
GRE or SSFP cardiac gated CINE sequence.  The advantage of segmented k-space imaging is 
that the signal is sampled within a brief readout window with very short TE, (utilizing fractional 
echoes).  This reduces flow artifact and loss of signal due to magnetic susceptibility artifacts.  
The disadvantage of segmented k-space imaging is the relatively low efficiency of these methods 
because an rf pulse is required for each line of k-space29.  Also, the contrast between the tags and 
the background tissue decreases as both are driven towards the same steady-state with many 
imaging pulses6;28;30.  Echo planar imaging yields high efficiency, high tag contrast images; 
however, single shot EPI images of the heart are extremely difficult to obtain on a consistent 
basis because of local magnetic field inhomogeneities31;32.  A compromise of segmented echo-
planar imaging33;34 allows us to tune the readout duration to its optimum.  In the heart, the 
optimal total EPI readout duration is about 10ms.  The addition of using TR values of less than 5 
ms allows us to perform segmented EPI readouts while maintaining an SSFP type contrast and 
SNR5;6;35.  Through the variation of imaging tip angle, the user is able to tune the contrast to be 
more like bright blood SSFP (with lower tag contrast at later time points in the heart cycle), or 
darker blood SPGR (with extended tag contrast).  The value of the optimal imaging tip angle will 
depend on the T1 and T2 of the tissue being imaged.  If one were tracking displacement of the 
brain with SSFP tagging, the parameters would be significantly different that those in the heart. 
 
Velocity Encoding Techniques 
 
Measuring tissue motion with velocity encoding was originally proposed by Van Dijk 36 and 
further developed by Pelc et. al.37 for CINE acquisitions.  In contrast to the tagging methods 
which image prepared longitudinal magnetization, the velocity encoding methods obtain 
information about the dynamics of the tissue by phase encoding the velocity of the transverse 
magnetization shortly before the echo readout.  This gives velocity encoding methods an 
advantage over tagging techniques because they do not suffer from tag pattern fading due to T1 
recovery; however, they are more susceptible to motion artifacts.  The development of fast 
switching gradients have reduced this susceptibility significantly, and remarkable datasets of 
blood flow patterns have been achieved38.  The trajectory of material points in the tissue of 
interest can be computed by integrating the three dimensional velocity field, or spatial gradients 
in the velocity field can be used to derive the strain-rate tensor in soft tissue directly37;39;40. 
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Motion Tracking with Velocity Encoding Techniques 
 
Because velocity encoding is a difference technique, at least four acquisitions are required to 
obtain the three dimensional velocity vector at each image pixel.  Velocity encoding of the 
transverse magnetization is usually accomplished with bipolar flow encoding pulses.  To obtain 
the three dimensional velocity at a specific point, the optimal combination of bipolar pulses is a 
tetrahedron41 but deviations from this pattern are possible depending on the circumstances12.  
The different flow encoding acquisitions can be obtained in four contiguous TR periods, or 
obtained at the same time delay from the ECG in four heartbeats.   
 
Harmonic Phase (HARP) Imaging Methods 
 
In the HARP42 imaging method a sinusoidal tagging pattern is applied to the myocardium with a 
simple 1-1 SPAMM16 tagging pulse.  This sinusoid moves the peak of the raw data to a region of 
k-space centered around the frequency of the sinusoid.  If an image is reconstructed from a 
window of k-space around this peak, the magnitude of the image will be a low resolution picture 
of the amount of signal in the tagged sinusoid, and the phase of the image will show a banding 
pattern that deforms with the myocardial motion.  Relative motion between movie frames of 
HARP images can be computed from the phase differences, hence motion can be measured 
without segmenting the position of the underlying tags.  The elimination of the tag segmentation 
step in the analysis can reduce the analysis time by many orders of magnitude.  The drawback is 
that the image is a relatively low resolution representation of the deformation field due to the fact 
that a window of k-space was used to reconstruct the HARP images.  However, the fact that a 
small region of k-space is acquired means that the imaging can be performed very fast43.  The 
same encoding principle can be used to measure longitudinal strain while imaging in the short 
axis plane44.  This technique is particularly useful for measuring displacement fields that are 
spatially smooth. 
 
Displacement Encoding using Stimulated Echoes (DENSE)  
 
DENSE45 imaging techniques use image phase to encode the net displacement of a pixel over 
time.  Transverse magnetization is position-encoded by a short gradient pulse, stored as 
longitudinal magnetization during the “mixing time” (denoted TM), and then refocused  before 
image data acquisition by an “unencoding” gradient pulse. The unencoding gradient pulse causes 
the transverse magnetization to refocus at a phase angle that is linearly proportional to the 
displacement that occurred during the mixing time.  Unfortunately, only ½ of the original 
transverse magnetization is recovered.  However, the DENSE image has displacement estimates 
on the same spatial scale as the image pixel grid and those displacement estimates do not require 
image segmentation.  These properties make DENSE a very attractive method for quantitative 
estimates of strain and displacement.  Direct visualization of the myocardial deformation is not 
available, but it can be achieved by driving the motion of  “synthetic” tags on the heart with the 
underlying measured displacement measurements.  A number of variants of the DENSE 
technique have been developed to increase the SNR of the displacement estimates and reduce the 
effects of T1 recovery46-50.  One drawback of DENSE is that it is a phase based technique.  There 
are many causes of phase errors in imaging pixels around the heart, such as field 
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inhomogeneities, chemical shift, motion of the blood, and motion during breathing.  
Unfortunately, when the value of the phase of a pixel is the motion estimate, that estimate is 
susceptible to error from these many sources.   
 
Modeling Motion 
 
In order to obtain precise quantification of the tissue motion with spatial tagging techniques the 
position of the tags must be measured with a tag detection algorithm18;24;51;52, and the three 
dimensional motions of the tissue computed from the combination of  partial displacement 
information from each tag.  A number of approaches can be employed to perform this estimation; 
most of the work to date has been done in modeling the motion of the heart53-56.  General motion 
field reconstruction can be achieved with techniques such as B-splines in space and time57-60.  
Also, alternative methods exist for tracking motion such as optical flow61,  HARP tagging42, and 
direct visualization of strain encoded MR44.  This motion modeling has been investigated 
extensively in modeling cardiac function62. 
 
Motion Artifact Reduction 
 
In many applications, patient motion is not the target, it is the problem.  For example, high 
resolution imaging of the coronary arteries requires long acquisition times in order to achieve 
sufficient signal-to-noise within each small voxel.  Unless we are able to increase the 
polarization of the coronary blood, data acquisition will likely remain in the “minutes” time 
frame for this application.  Motion artifacts can appear due to displacement of the target from 
view to view; these can be reduced to varying degrees with phase encode view re-ordering 
methods63-65.  For certain applications, the motion of the object from view to view can be 
determined from the imaging data itself66-70 or from specially crafted navigator pulses71;72.  Also, 
there is the potential for correcting image displacement in the spatial domain after full or partial 
image reconstruction73;74.    
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